
University of Pennsylvania
Dept. of Computer and Information Science

Philadelphia, Pennsylvania, USA

In Partial Fulfillment of the WPE-II Requirement

Advances in Theory and Applications of
Token Causality in Trace Analysis

Author: Shaohui Wang

Committee Chair: Professor Boon Thau Loo
Committee Member: Professor Oleg Sokolsky
Committee Member: Professor Sampath Kannan

September 17, 2013

Abstract

Token causality refers to the causal relationship between system events
on an individual system execution, as opposed to general causality, where
relationships between types of events are studied. When a system fails at
run-time, represented as the violations of certain system safety properties
on an observed system execution trace, the investigation of token causal-
ity is helpful in understanding the root cause why such system safety
properties are violated.

In this report, three different techniques in defining token causality
are surveyed. Though all based on counterfactual reasoning, the detailed
formulations of the causality definitions, and hence the algorithms for
deciding/approximating causalities, vary depending on the system defini-
tions and on the intended use of the causalities. For each of the three
surveyed approaches, the causality definitions are summarized and illus-
trated with examples, based on which the strength and limitations of
each approach are discussed. The survey is concluded with comparisons
across the three approaches and related work, as well as the challenges
and potential extensions in the study of token causality.

1

Contents

1 Introduction 4
1.1 An Informal Overview of Causality Analysis 5
1.2 Organization . 6

2 Logical Causality in Contract Violation 6
2.1 Traces, Contracts, and Violations 6
2.2 Weak, Necessary, and Sufficient Causality 8

2.2.1 Weak Causality . 8
2.2.2 Necessary Causality . 9
2.2.3 Sufficient Causality . 9
2.2.4 An Example of Using the Causality Definitions 9

2.3 Deciding Causality . 9
2.4 Extension: Horizontal Causality . 10
2.5 Critiques . 10

2.5.1 Discussion . 10
2.5.2 Strength . 11
2.5.3 Limitations or Possible Extensions 11

3 Explaining Counterexamples Using Causality 11
3.1 Preliminaries . 12
3.2 Defining Causality . 13

3.2.1 Examples . 14
3.3 An Approximation Algorithm . 15
3.4 Critiques . 15

3.4.1 Discussion . 15
3.4.2 Strength . 16
3.4.3 Limitations or Possible Extensions 16

4 From Probabilistic Counterexamples to Fault Trees 17
4.1 Defining Causality . 17

4.1.1 Traces, Feature Extraction, and Modeling of Faults 17
4.1.2 Actual Cause . 18
4.1.3 A Traingate Example . 19

4.2 Fault Tree Construction . 19
4.2.1 Definitions . 19
4.2.2 Fault Tree Construction Methodology 20
4.2.3 Approximation Algorithm 21

4.3 Critiques . 21
4.3.1 Discussion . 21
4.3.2 Strength . 22
4.3.3 Limitations or Possible Extensions 22

2

5 Discussion and Conclusion 23
5.1 Comparisons Across the Approaches 23
5.2 Discussion . 24

5.2.1 Counterfactuals as a Tool for Causality Reasoning 24
5.2.2 Using Three-valued Logics 24
5.2.3 Subjectivity of Causality Definitions 24
5.2.4 First Violations . 24

5.3 Conclusion . 25

References 25

List of Tables

1 Notations Used for Causality Definition in [2] 12
2 Comparison Across the Approaches 23

List of Figures

1 An Example Cruise Control System 6
2 A Contract for the SLD Component 7
3 A Counterexample with Explanations 14
4 Fault Tree of the Airbag System . 20

3

1 Introduction

Designing and implementing a complex software system has never been an easy
task. Over the years many theories/principles in software engineering have been
proposed, yet the problems with faulty software systems have never decreased.
Failures in software systems could lead to substantial loss in time, energy, money,
or even human life. When a software system fails, it is an important task to
establish a causal chain leading from a component fault to the system failure.

The causal chain contains valuable information that can be exploited for
further use in system design and analysis. (1) The system designers can learn
about potential system design errors from the causal chains and avoid such
design errors in the next generation of the system design. (2) The causal chain
contains information on why the component errors propagated to the system
level so proper control measures can be added to the system so that such error
propagation are mitigated. (3) The chance that the identified causes for a
system failure can happen is an important source of information in the fault
tree analysis.

In this report, I aim to study the advances in the identification of root
causes and the exploitation of information from the identification process, based
on trace analysis. System traces are either recordings from system execution
where key events in the system are kept, or counterexamples generated during
the system verification process, such as model checking.

One thing to note is that in this report, token causality is studied as op-
posed of general causality. Token causality represents the relationships between
two events in a given system execution, while general causality refers to the
general relationship between categories of events. For example, “calling meth-
ods on uninitialized class variables may cause NullPointerException in Java”
is a statement of general causality, while token causality studies, for example,
whether an occurrence of a NullPointerException is caused by not initializing
certain variables, given a particular program execution.

The three papers that are selected are as follows.

[8] G. Gössler, D. L. Métayer, and J.-B. Raclet. Causality analysis in contract
violation, in Runtime Verification, 2010.

[2] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining
counterexamples using causality. In Computer Aided Verification, pages
94–108. Springer, 2009.

[12] M. Kuntz, F. Leitner-Fischer, and S. Leue. From probabilistic counterex-
amples via causality to fault trees. In Computer Safety, Reliability, and
Security, volume 6894 of Lecture Notes in Computer Science, pages 71–84.
Springer Berlin Heidelberg, 2011.

The three papers focus on different aspects of causality analysis: definitions
of causality given a particular system model, usage of causality for explaining
failures, and exploitation of causality information from a given set of traces to

4

obtain new knowledge in system analysis. The first paper discusses the ingredi-
ents that are necessary to define a cause in the engineering domain. The second
paper discusses one possible use of the token causality relationship: providing
an explanation to the violation of system properties. The third paper discusses
another potential use of the token causality relationship: serving as basis for
the identification of fault tree analysis.

The problems proposed in the papers are both challenging and useful. They
introduce a relatively new research field in system analysis in that, in addition
to the fault diagnosis which aims at finding the faulty components responsible
for the system failure, the work in this set of papers formally defines the notion
of causes and demonstrates the uses of the causality analysis.

1.1 An Informal Overview of Causality Analysis

The informal reasoning about causes is performed by considering observations
otherwise than they have been observed. In the literature, the phrases factual
world and counterfactual world are used to describe the observations/facts and
the imagined situations during the thought process of causality analysis.

Common requirements that an event A is the cause of another event B
include the following.

1. A happens before B in the factual world.

2. In any counterfactual world where A does not happen, B does not happen,
i.e., the occurrence of A is necessary for the occurrence of B.

3. In any counterfactual world where A happens, no matter how the system
execution changes after the occurrence of A, B would happen, i.e., the
occurrence A is sufficient for the occurrence of B.

As will be seen in the reviewed work, not all of the requirements need to hold
for the establishment of causal relationship.

The informal notion of causality is inexact in two ways. First, the notion of
a counterfactual world is often under-specified. On one hand, it is overwhelming
to consider everything involved in a causality analysis session, while on the other
hand, key factors that should indeed be considered is sometimes not known to
the analysis in the first place. Second, for a causality analysis to be convincing,
the counterfactual world should share certain level of similarity with the factual
world. The ideal situation would be that the only events of concern are changed
while other factors are kept the same. However, this situation is hardly achieved
when reason about system behaviors under changed events. The surveyed pa-
pers in this report are among the first attempts to the formal definitions of
causality. Although not agreeing on every aspect in defining causalities, the
papers show several ways to providing a more precise characterization of the
notion of token causality.

5

1.2 Organization

Sections 2, 3, and 4 reviews the papers [8], [2], and [12], respectively. In each of
the sections, the basic theory of causality definition and their applications are
introduced, and the assumptions, strength, and limitations of each approach are
then discussed. In order to gain further insights of the causality analysis problem
in general and the differences between the approaches, a horizontal comparison
between the approaches is given in Section 5.1. Several general topics with
related to the causality analysis in general is discussed in Section 5.2, and the
reported is concluded in Section 5.3.

2 Logical Causality in Contract Violation

Given a system execution on which some system property violation happened,
the investigation of the cause for this violation depends on the causality defini-
tion. In this section, the work by [8] is reviewed as one representative approach
to the formal definition of causality.

2.1 Traces, Contracts, and Violations

In [8], a system is modeled as a block diagram where system components are ba-
sic blocks sending and receiving events via wire connections. Figure 1 shows an
example of an automatic cruise control system. The SLD (System Limit Detec-
tor), OR (Object Recognition), and ACC (Adaptive Cruise Control) compo-
nents are synchronized via a rendezvous tck events from the Clock component.
In addition, events on the same wire are considered synchronous. An interac-
tion is either an event of a single component or a set of events involved in a
synchronization between components.
278 G. Gössler, D. Le Métayer, and J.-B. Raclet

ACC

Switch

SLD

Sensor

HMI

TS

BS

Radar

OR

Clock

sldo
brake

throttle
ssro sldi

swo,on

hmio,off

bsi,user

tsi,auto

tsi,user

bsi,auto

hmio,on

swo,on swo,off

acci,off

accb
o

acct
o

swi,on

tck

tck

accs
i

tck

acco
i

acci,on

rdro ori

tck

oro

Fig. 3. Architecture of the cruise control system

Time is represented in the architecture through a Clock component which
synchronizes with SLD, OR, and ACC through a rendez-vous on tck actions.
Following the contract CSLD in Fig. 1, exactly one clock tick action is allowed
between an input sldi and the corresponding output sldo. We associate to OR
a similar contract COR imposing also a delay of one tick between the occurrence
of ori and of oro in GOR. For GACC , there again the delay of reaction between
the reception of input(s) accs

i and/or acco
i and the emission of the output accb

o

or acct
o is fixed to 1. The assumption of CACC is the LTS accepting any traces in

Σ∗
ACC for which any two occurrences of accs

i are separated by at least one tck.
Globally, in order to ensure the security of the car and compliance with

speed regulations, the end-to-end throughput of the system must be less than
three ticks. The guarantee of the global contract is then the LTS accepting the
traces formed by the repetition of the sequence starting by any interleaving of
ssro|sldi.sldo|accs

i and rdro|ori.oro|acco
i followed by accb

o|bsi,auto or acct
o|tsi,auto

with at most three ticks in each sequence. It is easy to check that the set of local
time constraints implies the global time constraint.

In the following, we consider successively scenarios involving failures within
dependent (serial) components and independent (parallel) components. We use
∆, ∆SLD, ∆OR and ∆ACC to denote the global delay and the delays observed
for components SLD, OR, and ACC respectively. Local contracts impose that
∆SLD = 1, ∆OR = 1 and ∆ACC = 1, and the global guarantee requires that
∆ ≤ 3.

4.1 Failures within Dependent Components

We first focus on failures involving serial components: the SLD and ACC com-
ponents. The same scenarios can be transposed to any pair of dependent com-
ponents (HMI and Switch, Switch and ACC, OR and ACC, etc.).

Figure 1: An Example Cruise Control System ([8])

A trace for this system is represented as a sequence of interactions between

6

components with the two aforementioned means of synchronization for events.
For example:

SLD ∶ sldi, tck, tck, sldo, tck, tck, . . .
ACC ∶ tck, tck, accsi , tck, tck, accbo, . . .
Clock ∶ tck, tck, tck, tck, . . .
index ∶ 1 2 3 4 5 6 7

(1)

is a (partial) trace where the traces from OR (Object Recognition), HMI
(Human-Machine Interface), Switch, BS (Break System), and TS (Throttle
System) components are not shown.

The interactions are ordered globally as shown in the index line of Equa-
tion (1). For convenience, when a single component is in consideration, its local
index of events are used, e.g., for ACC, the first local event tck is part of the
second interaction globally. For a global trace tr, let πk be the projection func-
tion from the global trace tr to the local trace trk of component Bk, and let
tr[j] be the jth interaction. For a trace tr, let tr[1..i] represent the prefix of tr
upto the ith event and let tr[i] represent the ith event on tr. The notation for
global traces is analogously defined.

The four tck events represent the elapse of four time units. The sldo and
accsi events in the fourth global interaction represent an interaction between the
SLD and the ACC components with the output sldo from SLD consumed by
the ACC as input accsi .

System and component properties can be formally expressed as predicates
on traces, using a contract language based on labeled transition systems (LTSs).
An LTS (over an alphabet Σ of events) is a tuple B = (Q, q0,Σ,→) with Q a
finite set of states, q0 ∈ Q an initial state, and →∶ Q × Σ × Q the transition
relation. A contract C = (A,G) is a pair of LTSs A and G, known as the
assumption and guarantee of the component, respectively. The assumption of
a component determines when the component is responsible for its designated
responsibilities, specified in the guarantee part of a contract. For example,
Figure 2 shows the contract for the SLD component. The assumption LTS
ASLD (Figure 2(a)) specifies that, the SLD component expects new input (sldi)
from the environment only after an existing one has been processed (sldo).
Under this assumption, the SLD component guarantees (GSLD in Figure 2(b))
that the input is forwarded after exactly one clock tick.

Causality Analysis in Contract Violation 273

sldi

sldo

tck tck, sldi

(a) Assumption ASLD

sldi

tcksldo

tck

(b) Guarantee GSLD

sldi

tcksldo

tck

tck
sldi, sldo

sldo

(c) Implicit form

Fig. 1. A contract CSLD for the SLD component

Definition 7 (Contract). A contract over a component with interaction model
IM is a pair (A, G) of deterministic LTSs over IM, where A is called assumption
and G guarantee.

Example 2. We consider in Fig. 1 a contract CSLD regarding the behavior of a
Speed Limit Detector component (SLD) embedded in a car. It communicates
with the environment though a sensor in order to get the speed limitation (sldi)
and is then able to forward this information (sldo) in the system. Time is dis-
cretized with the tick (tck) action. According to Fig. 1(b), the component guar-
antees to forward each received input (sldi) after one tick. The assumption of
SLD is specified in Fig. 1(a): the guarantee will hold if the environment re-emits
each input (sldi) until it has been transmitted (sldo).

Definition 8 (Satisfaction). A trace tr over IM satisfies a contract C=(A, G),
noted tr |= C, if for i the maximal position for which tr[1..i] |= A we have
tr[1..i] |= G.

Example 3. The trace tr1 = sldi.tck.sldo.sldi.tck.sldo.tck.sldi.tck.sldo satisfies
the contract in Fig. 1 whereas tr2 = sldi.tck.sldo.sldi.tck.tck.sldo.sldi does not
as tr2[6] |= ASLD but tr2[6] |=/ GSLD.

The implicit form of a contract C is an LTS characterizing the set of traces
satisfying C.

Definition 9 (Implicit form). Given a contract C = (A, G) over a component
with interaction model IM, we call implicit form IF(C) of C the LTS (QA ×
QG ∪ {,}, (q0

A, q0
G), IM, →) with the following transitions:

– (qA, qG)
α→ (q′

A, q′
G) if qA

α→A q′
A and qG

α→G q′
G

– (qA, qG)
α→ , if there is no transition labeled by α stemming from qA in A

– , α→ , for all α ∈ IM

Example 4. The implicit form of the contract CSLD is depicted in Fig. 1(c).

Proposition 1. tr |= IF(C) ⇐⇒ tr |= C

According to Proposition 1, satisfaction of a contract C can be verified by check-
ing acceptance by the implicit form of C.

Figure 2: A Contract for the SLD Component ([8])

7

A trace tr is accepted by an LTS B = (Q, q0,Σ,→), denoted tr ⊧ B, if there
exists a sequence of states q0, . . . , qi, . . . of Q such that q0 = q0 and for all i ≥ 0,
(qi, tr[i+1], qi+1) ∈→. A trace tr satisfies a contract C = (A,G), denoted tr ⊧ C,
if tr[1..i] ⊧ G for the maximal position i such that tr[1..i] ⊧ A. A trace tr
violates a contract C = (A,G) if and only if it does not satisfies C, i.e.,, there
exists an index i such that tr[1..i] ⊧ A but tr[1..i] /⊧ G. In particular, a minimal
index can be determined for a violation.

On the example trace for SLD in (1), the assumption ASLD is satisfied,
while the guarantee GSLD is not (detected on the third event of the trace (second
occurrence of tck)). Therefore it is said that the contract CSLD = (ASLD,GSLD)
is violated on the trace.

2.2 Weak, Necessary, and Sufficient Causality

Causality definitions are based on a given trace with a global violation. In the
following definitions, it is assumed that the following are given:

• A system with n components Bi, 1 ≤ i ≤ n.

• For each Bi, a component contract Ci = (Ai,Gi).

• The system contract C = (A,G), defined over the union of event alphabets
of each component.

• A system trace, given in the form of individual component traces tri as in
Equation (1).

Three notions of causality are defined in [8], namely the weak, necessary, and
sufficient causality. The causalities are defined as relationships between prefixes
of local traces and the violation of the guarantee of the global contract. (The
discussion on this choice is in Subsection 2.5.1.)

2.2.1 Weak Causality

Weak causality formalizes the Lamport causality [13] in the distributed systems
setting, i.e., a local violation must precede the global violation to be considered
as the cause.

A prefix trk[1..i] of the trace trk for component Bk is a weak cause of the
violation of the global contract G, if

1. trk[1..i] violates its local guarantee, i.e., trk[1..i] /⊧ Gk, and

2. the last event on the prefix trk[1..i] occurs before the global violation,
i.e.,

∃tr ∶ ((∀l ∶ πl(tr) = trl) ∧ (∃j ∶ ∣πk(tr[1..j])∣ = i)

∧ tr[j](k) ≠ ∅ ∧ j ≤ min{m ∣ tr[1..m] /⊧ G}).
(2)

8

2.2.2 Necessary Causality

A prefix trk[1..i] of the trace trk for component Bk is a necessary cause of the
violation of the global contract G, if

1. trk[1..i] is a weak cause for the violation of G, and

2. replacing trk[1..i] with another prefix that satisfies Gk while keeping all
other traces would not have violated the global guarantee, i.e.,

∀tr′s.t. (∣πk(tr′)∣ ≥ i ∧ ∀j ∈ {1, . . . , n} ∖ {k} ∶ πj(tr′) = trj) ∶
(πk(tr′[1..i] ⊧ Gk Ô⇒ tr′ ⊧ G) .

(3)

2.2.3 Sufficient Causality

A prefix trk[1..i] of the trace trk for component Bk is a sufficient cause of the
violation of the global contract G, if

1. trk[1..i] is a weak cause for the violation of G, and

2. replacing any traces except trk with traces satisfying their respective com-
ponent contracts would still lead to a violation of the global guarantee,
i.e.,

(∀p ∈ {1, . . . , n} ∖ {k} ∶ πp(tr′) ⊧ Cp ∧ πk(tr′) = trk)Ô⇒ tr′ /⊧ G. (4)

One thing to note in the sufficient causality definition is that the recon-
structed traces should be maximal to ensure that tr′ is long enough to contain
the potential violation of G.

2.2.4 An Example of Using the Causality Definitions

Take the trace given in Equation (1) as an example. Assume that the global
contract is that the latency ∆ between an input either SLD or OR to an output
from ACC is less than three, i.e., ∆ ≤ 3, then the trace shows an violation of
the global contract. Also assume that the contract for the ACC component
is analogous to the one for SLD, shown in Figure 2, i.e., the latency is one.
According to the causality definitions, both the violations in SLD and the ACC
are necessary for the global violation, but not sufficient.

2.3 Deciding Causality

The causality definitions shown in Subsection 2.2 are all decidable. Despite the
use of “forall” and “exists” quantifications over the set of possibly infinite global
traces in the causality definitions, the decidability is seen from the facts that

(a) the potential traces satisfying local contracts are exactly characterized by
the component contracts,

9

(b) the potential traces satisfying the condition (in sufficient causality defini-
tion) that “the projection of a global trace tr′ onto a component Bk is the
same as observed on trace tr” can be encoded as a “linear” LTS accepting
exactly the sequence of events on trk, and

(c) the causality checking can be transformed into checking language contain-
ment relations between the composition of component LTSs that symboli-
cally encodes the set of potential traces and the LTS for the global contract.

A detailed construction for the sufficient causality case can be found in [8].

2.4 Extension: Horizontal Causality

The causality definitions introduced in Subsection 2.2 are for the relationship
between a prefix of a local trace and the violation of the global guarantee. This
is referred to as vertical causality by the authors of [8]. By adopting similar
formalization, it is possible to define the causality between a prefix of a local
trace and the violation of a downstream component. This is referred to as
horizontal causality.

The main idea to adapt the definitions is to consider the potential changes
to the satisfaction of the guarantee Gl of component Bl (instead of the global
guarantee G), when a prefix of the suspected trace trk is replaced (for necessary
causality) or persisted (for sufficient causality).

2.5 Critiques

2.5.1 Discussion

Assumption on Contract Consistency. One assumption involved in the
causality definitions in [8] is that, the contracts Ci are consistent with the global
guarantee, i.e., for all traces tr,

(∀i ∶ πi(tr) ⊧ Ci)Ô⇒ (tr ⊧ G). (5)

One interpretation for this assumption is that the system is well-defined, in
that, if there is a violation of the system contract, then there must be at least
one violation in the component contract. If this assumption is dropped, it may
happen that the system contract is violated, while there are no components to
start the investigation of the the causes. These are symptoms that the system
design should be reconsidered that the
Assumption on Local Trace Recording. Another assumption used in this
work is that, the local traces recorded at each component during run-time does
not define a global trace uniquely, in general. This assumption leads to the
formulation of the causality in this work to filter from all possible traces that
satisfy certain filtering criteria. The straightforward algorithm suggested by the
definitions, i.e., generating the set of traces and filtering the ones that satisfy
the criteria, is not effective, if applicable at all. This calls for alternative ways
to deciding the causality definitions, which the paper does not discuss.

10

Relata of Causality. Also notice that the causality definitions in this pa-
per establish relationships between prefixes of local traces and violations of
system/component contracts. This seems counter-intuitive at first since the
common understanding of causality is that, causality is a relation between two
events. However, as is also evidenced by the third reviewed paper ([12]), this
treatment provides a better viewpoint towards the property violation. Indeed,
it is the prefix of a trace leading to a particular event that causes the effect to
happen, rather than a single occurrence of an event.

2.5.2 Strength

Separate Treatment of Causality Definitions. One advantage of the ap-
proach in this paper is that, the definitions for weak, necessary, and sufficient
causalities are separately given. This enables flexible choices when different sce-
narios are of concern, as it is not always possible or necessary to identify a cause
which is both necessary and sufficient.
Component-based Systems. Another advantage of this approach is to take
the viewpoint of systems as component-based. This makes it intuitive when as-
signing blame to the traces produced by the faulty components. Also, it enables
the definitions of horizontal causalities discussed in Subsection 2.4, where the
traces from individual components are manipulated.

2.5.3 Limitations or Possible Extensions

Causes Being A Set of Local Traces. One possible next work for this
paper is to define the notions of causality between a set of local traces violating
their contracts and the violation of the global guarantee. For instance, the
example in Subsection 2.2.4 has neither SLD nor ACC as the sufficient cause,
because the individual local violations alone does not sufficiently lead to the
global violation. However, viewing the two components together as a set, the
violation of the global contract is inevitable. In this case, the set of local traces
from both SLD and ACC is a sufficient cause for the global violation of the
guarantee of the system contract.
Lack of Efficient Algorithms. Another limitation of this work is the lack of
an efficient algorithm to compute the causality definition. According to discus-
sions with one of the authors, the problem of checking causality can be translated
to an equivalent problem of model checking [7]. It is known that model checking
has an algorithmic complexity of EXPTIME in general [4]. Whether algorithms
leveraging existing study in model checking or approximation algorithms for
efficient estimation of causality definitions can be developed is worth further
examination.

3 Explaining Counterexamples Using Causality

The causality definitions given in [8], summarized and discussed in Section 2, is
by no means the only way to define causality. Different trace models, assump-

11

tions on system execution, means of deciding violations, etc. are all potential
factors for a different set of causality definitions. In this section, an alternative
approach in [2] will be discussed and contrasted with the one in [8] in detail.

In model checking LTL formulas for Kripke structures [4], when a property ϕ
fails to hold, a counterexample trace is often given by the model checker. Such a
counterexample trace is usually minimal, which contains limited information for
the understanding of why the property ϕ is violated. Causality analysis provides
a natural explanation of violations of properties on a given counterexample trace,
by identifying the set of variable values that are causes for the violation.

3.1 Preliminaries

A list of notations used in the definitions are summarized in Table 1. The intro-
duction of the notions ⟨s, v⟩ and thereof is a step towards the formal analysis of
traces, i.e., taking states on traces as mathematical objects used in the causality
definition.

Notation Meaning

V a finite set of (boolean) variables
K K = (S, I,R,L); a Kripke structure
S a finite set of states of K
I I ⊆ S; the set of initial states
R R ⊆ S × S; the (total) transitivity relation
L L ∶ S → 2V ; the labeling function; v ∈ L(s) iff v is true in s
π π = s0, s1, . . . a path in K, if s0 ∈ I and ∀i.(si, si+1) ∈ R

π[j..k] the subpath of π starting with sj and ending with sk
π ⋅ ρ the concatenation of a finite path π and a path ρ
⟨s, v⟩ the same as state s, but with variable v in consideration
⟨ŝ, v⟩ the state derived from s, where v’s (boolean) value is flipped

π⟨ŝ,v⟩ the path derived from π by flipping v’s value in state s
A a set of pairs of the form ⟨s, v⟩
Â the set of states derived from A; Â = {⟨ŝ, v⟩ ∣ ⟨s, v⟩ ∈ A}
πÂ the path derived from π by flipping v’s value in s, ∀⟨s, v⟩ ∈ A

Table 1: Notations Used for Causality Definition in [2]

LTL formulas are defined with the syntax

ϕ ∶∶= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ Xϕ ∣ Gϕ ∣ Fϕ ∣ ϕUϕ, (6)

where a ranges over the set V of all variables. An occurrence of a sub-formula
ψ of ϕ has positive (negative) polarity if it occurs under an even (odd) number
of negations.

Given a Kripke structure K = (S, I,R,L), a path π in K, a formula ϕ, a pair
⟨s, v⟩ has a bottom value for ϕ in π, if for at least one occurrence of v in ϕ,

12

either (a) v has a positive polarity in ϕ and v /∈ L(s); or (b) v has a negative
polarity in ϕ and v ∈ L(s).

A pairs ⟨s, v⟩ with a bottom value is a candidate which would potentially
make a formula become true if the value of v is flipped in the state s. For
example, on a path π = s0, s1, s2, . . . where L(si) = ∅ (0 ≤ i ≤ 2), a formula Gp
has bottom pairs ⟨si, p⟩ (0 ≤ i ≤ 2). Flipping the values of p on any of the states
si (0 ≤ i ≤ 2) would make the formula Gp a step further towards being true.
Similarly, if the formula is Fp, then flipping the values of p on any of the states
si (0 ≤ i ≤ 2) would make the formula Fp true, if it were not true already. Pairs
with bottom values are candidates for causes for property violations, as will be
defined in the next subsection. In the worst case, flipping the value v in a pair
⟨s, v⟩ has no effect on changing the formula truth value. This happens when the
variable has both positive and negative polarities, e.g., G(p ∧ ¬p).

3.2 Defining Causality

For safety properties expressed in LTL, a counterexample given by model check-
ers is usually a finite path, expressed as a prefix π[0..k] of an infinite path π.
For such finite prefixes, the satisfaction relation of an LTL formula ϕ cannot be
always determined. Three-valued semantics are used to describe the satisfaction
on finite traces, as defined below [5]. (The subscript f represents “finitely”.)

• The value of ϕ is true (denoted π[0..k] ⊧f ϕ) on π[0..k] iff for all infinite
computation paths ρ, π[0..k] ⋅ ρ ⊧ ϕ.

• The value of ϕ is false (denoted π[0..k] /⊧f ϕ) on π[0..k] iff for all infinite
computation paths ρ, π[0..k] ⋅ ρ /⊧ ϕ.

• Otherwise, the value of ϕ is unknown (denoted π[0..k] ?ϕ).

The causality definition in [2] takes a different approach than the one in [8].
In the terminology of [8], the causality used in [2] is neither necessary nor suf-
ficient, but rather, a notion of potential cause. This is seen from the definitions
of criticality and causality in this paper.

A pair ⟨s, v⟩ is critical for the failure of ϕ on π[0..k] if π[0..k] /⊧f ϕ, but
either π⟨ŝ,v⟩[0..k] ⊧f ϕ or π⟨ŝ,v⟩[0..k] ?ϕ. In other words, a pair ⟨s, v⟩ is critical
if changing v’s value in s plays a role in changing the formula ϕ’s satisfaction,
i.e., changing from false to either true or unknown.

A pair ⟨s, v⟩ is a cause of the first failure of ϕ on π[0..k] if k is the smallest
index such that π[0..k] /⊧f ϕ, and there exists a set A of bottom-valued pairs,
such that ⟨s, v⟩ /∈ A, and the following hold:

1. πÂ[0..k] /⊧f ϕ, and

2. ⟨s, v⟩ is critical for the failure of ϕ on πÂ[0..k].

In the definition for a cause, the set A can be chosen to be empty. In this
case, it directly follows that if a pair ⟨s, v⟩ that is critical for the violation of

13

ϕ on π[0..k] then it is a cause (provided that the k is the smallest index that
π[0..k] /⊧f ϕ).

In cases where A is not empty, the definition of cause expresses that, if some
values of variables (those in A) on the path π[0..k] could be flipped so that
additionally flipping the value of the variable v in state s changes the truth
value of the formula ϕ from false to either true or unknown, then the pair
⟨s, v⟩ is the cause. Since the pairs in A must be chosen to be bottom-valued
pairs, this definition of cause represents a potential cause: as long as a variable
could potentially play a critical role in changing the truth value of a formula ϕ,
provided some other variables being flipped, it is considered to be a cause.

3.2.1 Examples

A small example is to consider the violation of G(a ∧ b ∧ c) on the path π =
s0, s1, s2, . . . labeled as (∅)ω (i.e., every variable is false on every state). The first
failure of the formula G(a∧b∧c) occurs on state s0, thus π[0..0] is considered as

the prefix. The set A = {⟨s0, b⟩, ⟨s0, c⟩} can be chosen such that (1.) πÂ[0..0] /⊧f
G(a∧ b∧ c) and (2.) ⟨s0, a⟩ is critical for the failure of G(a∧ b∧ c) on πÂ[0..0].
Therefore ⟨s0, a⟩ is a cause for the first failure of ϕ on π[0..0]. Similarly ⟨s0, b⟩
and ⟨s0, c⟩ are causes too.

The authors incorporated the proposed approach into the product IBM Rule-
Base PE,1 where all causes for a violation of a property are displayed with a
red dot, along with the counterexample trace generated by the model checker,
as shown in Figure 3. For this example, the property under consideration is

ϕ ∶= G((¬START ∧ ¬STATUS VALID ∧ END)→
X(¬START U (STATUS VALID ∧ READY))).

(7)

This property expresses that, a new transaction should not begin before the
previous transaction has been finalized (indicated by STATUS VALID and READY

both being true).

96 I. Beer et al.

had A not happened (this is the counterfactual condition, since A did in fact happen)
then B would not have happened. Unfortunately, this definition does not capture all
the subtleties involved with causality. The following story, presented by Hall in [21],
demonstrates some of the difficulties in this definition. Suppose that Suzy and Billy
both pick up rocks and throw them at a bottle. Suzy’s rock gets there first, shattering the
bottle. Since both throws are perfectly accurate, Billy’s would have shattered the bottle
had it not been preempted by Suzy’s throw. Thus, according to the counterfactual con-
dition, Suzy’s throw is not a cause for shattering the bottle (because if Suzy wouldn’t
have thrown her rock, the bottle would have been shattered by Billy’s throw). Halpern
and Pearl deal with this subtlety by, roughly speaking, taking A to be a cause of B if B
counterfactually depends on A under some contingency. For example, Suzy’s throw is
a cause of the bottle shattering because the bottle shattering counterfactually depends
on Suzy’s throw, under the contingency that Billy doesn’t throw.

We adapt the causality definition of Halpern and Pearl from [22] to the analysis of a
counterexample trace π with respect to a temporal logic formula ϕ. We view a trace as
a matrix of values, where an entry (i, j) corresponds to the value of variable i at time
j. We look for those entries in the matrix that are causes for the first failure of ϕ on
π, according to the definition in [22]. To demonstrate our approach, let us consider the
following example.

Example. A transaction begins when START is asserted, and ends when END is as-
serted. Some unbounded number of time units later, the signal STATUS VALID is
asserted. Our specification requires that a new transaction must not begin before the
STATUS VALID of the previous transaction has arrived and READY is indicated1. A
counterexample for this specification may look like the computation path π shown in
Fig. 1.

Fig. 1. A counterexample with explanations

In this example, the failure of the specification on the trace is not trivially evident.
Our explanations, displayed as red dots2, attract the user’s attention to the relevant
places, to help in identifying the failure. Note that each dot r is a cause of the fail-
ure of ϕ on the trace: switching the value of r would, under some contingency on the

1 The precise specification is slightly more complex, and can be written in LTL as G((¬START ∧
¬STATUS VALID ∧ END) → X[¬START U (STATUS VALID ∧ READY)]).

2 We refer to these explanations as red dots, since this is their characteristic color in Rule-
Base PE.

Figure 3: A Counterexample with Explanations

Figure 3 shows a (finite) path π = s0, . . . , s11. The “high” value represents
boolean true, and “low” for boolean false, for the corresponding variables. The
path prefix π[0..10] contains the first violation of property ϕ. This is because,

1https://www.research.ibm.com/haifa/projects/verification/RB_Homepage/

14

for the transaction that has finished at state s6, a START occurs (in state s9)
before the transaction is finalized (in state s10).

The upper-right red dot in Figure 3, overlaid on the pair ⟨s9,START⟩, rep-
resents one potential cause for the property violation. Informally, this is in-
terpreted as that, a START inadvertently occurs before the finalization of the
previous transaction. Should it not occur, the violation to property ϕ in Equa-
tion 7 would not have occurred. This can be formally checked according to the
definition by choosing the set A to be the empty set.

The fact that the two red dots in state s7 (or s8) are potential causes requires
choosing the set A to be non-empty. For ⟨s7,STATUS VALID⟩ to be a cause,
⟨s7,READY⟩ has to be included in A, in the definition for cause. Flipping the
values of either STATUS VALID or READY alone in state s7 cannot change the
truth value of the property, while flipping them both can.

3.3 An Approximation Algorithm

It is proved by the authors of [2] that the exact computation of the set of causes
is NP-complete. At the heart of the complexity is the unknown set A when de-
ciding the defined causal relationship. The NP-hardness is proved by polynomi-
ally reducing a known NP-complete problem (checking causality in binary causal
models [6]) to checking causality defined in this paper. The proof of membership
of NP is by showing that the problem can be solved using a non-deterministic
Turing machine. Specifically, the algorithm is to non-deterministically choose a
candidate for the set A of bottom-valued pairs and check against the definition,
where the latter is linear time to the length of the path ∣π∣ and the depth of the
formula ∣ϕ∣.

To speed up the computation of the causes, an approximation algorithm is
proposed in [2]. The approximation works by ignoring the check whether the
set A of pairs makes ⟨si, v⟩ critical, but rather, computes all the bottom-valued
pairs. At the atomic level, ⟨si, p⟩ (⟨si,¬p⟩, resp.) is considered as a cause for
the formula ¬p (p, resp.) on trace π[i..k], and the approximation algorithm
recursively aggregates causes for any sub-formula that has a value false at the
current state. The algorithm, detailed in [2], has complexity that is linear in
the trace length k and formula depth ∣ϕ∣. Cases where the approximation is not
exact is discussed in Subsection 3.4.1.

3.4 Critiques

3.4.1 Discussion

Different Viewpoint in Defining Causality. As opposed to the approach
in [8], this paper defines a notion of potential cause. As long as there exists a set
of changes on the counterexample trace that makes a variable critical on a state,
it is considered to be a potential cause. This choice of definition is made by
need. The authors intended to design complementary visualization techniques
that assist system analyzers understand all potential causes of the property

15

violation, rather than to identify a culprit that has to be blamed without any
excuse. For the latter, the notion of necessary cause in [8] would suit better.
Bottom-value Pairs. An assumption used in this paper is that only bottom-
value pairs could be considered as candidates for causes. This assumption suits
the particular need of this paper that all potential causes for violations of the
property have to be found. If the purpose is to establish the causal relations
between occurrences of events and the satisfaction of safety properties, then an
alternative set of pairs of the form ⟨s, v⟩ should be considered.
On Approximation Algorithms. The approximation algorithm in this pa-
per works by computing bottom-valued pairs. This is based on an observation
that, discussed at the end of Subsection 3.1, bottom-valued pairs are potential
candidates for causes. The definition requires that, upon flipping the value of
a set A of pairs, flipping an additional value v in the state si is critical, i.e.,
changes the formula value from false to unknown or true. The approximation
algorithm would yield inaccurate result when this does not happen. For exam-
ple, consider ϕ = aU (bU c) and a trace π = s0, s1, . . . with L(s0) = {a} and
L(si) = ∅ for i ≥ 1. The formula has value unknown on π[0..0] but value false
on π[0..1], so the analysis of causes is on the prefix π[0..1]. The pair ⟨s0, b⟩ is
a bottom-valued pair and is thus selected by the algorithm. However, it is not
a cause since there does not exists a set A of bottom-valued pairs for the given
definition.

3.4.2 Strength

Explicit Treatment of Modification of Paths. One advantage of this pa-
per is the explicit representation of manipulations of traces as mathematical
objects. Since the analysis of causality is sensitive to the capability to generate
counterfactual worlds, the explicit representations, shown in the notations of

π⟨ŝ,v⟩ and πÂ, make it easy for stating properties on the altered traces.
Incorporation with Model Checkers. Different from the case in [8] where
the local traces are obtained from system execution, the traces in this paper is
obtained from counterexamples by model checkers. Incorporating the approach
of providing causal explanations of property violations back to the utility of
trace visualization could improve the system analysis experience.

3.4.3 Limitations or Possible Extensions

More Meaningful Visualization. The visual representation of the causes
overlaid on the counterexample trace, shown in Figure 3, shows limited infor-
mation compared to the definition. According to the definition, when a pair
⟨s, v⟩ is identified as a cause for a property ϕ on a prefix of a path π[0..k], a
corresponding set A of pairs is also identified. The intended interpretation of
the cause ⟨s, v⟩ is that, when the variables in pairs in A have flipped their values
on the finite trace π[0..k], the property’s truth value remains false, until the
value for variable v occurs in state s is changed. The visualization technique
shown in this paper simply plots all the pairs ⟨s, v⟩ that are causes and ignores

16

the companion set A for each cause. This treatment is less helpful, compared
to an alternative one that actually displays the companion set A for each cause
pair ⟨s, v⟩. Currently, showing this additional information is impossible for the
approximation algorithm in this paper, since the information of the companion
set A is simply lost during the process of the approximation computation.

4 From Probabilistic Counterexamples via
Causality to Fault Trees

In addition to providing explanations to violations of system property on a given
counterexample trace, information presented in a set of counterexample traces
can be extracted in order to obtain additional insight to the system analysis.
The work presented in [12] is one such example, where the authors base their
analysis on a set of given counterexamples, identify the common patterns on
the traces, and extract such information in to a fault tree [17]. For each of the
identified pattern, the probability that such pattern can occur can be estimated
based on the set of given counterexample traces. The approach of obtaining
fault trees presented in this work is fully automatic, which complements most
of the existing methodologies which require human expertise.

4.1 Defining Causality

4.1.1 Traces, Feature Extraction, and Modeling of Faults

In this work, a trace is represented as a linear Kripke structure over a set AP of
event variables, where the labeling relation is a function. L(si+1) = ai indicates
that the event that the variable ai represents just happened and lead the system
to transition from si to si+1. To formally reason about patterns of traces, the
authors defined an event order logic (EOL). The syntax for a formula ϕ in EOL
is as follows.

ϕ ∶∶= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ . ϕ (8)

The . symbol is called the sequential conjunction. A formula ϕ . ψ is satisfied
when ϕ is satisfied on a trace and ψ is then satisfied later on the trace. The
semantic interpretation of EOL on a trace is slightly different than that of
normal temporal logics. Given π = s0, s1, . . . , sn a finite trace, the semantics of
an EOL formula on a state si of π is defined inductively as follows.

si ⊧ a iff a ∈ L(si).
si ⊧ ¬ϕ iff not si ⊧ ϕ.
si ⊧ ϕ ∧ ψ iff ∃j, k ∶ i ≤ j, k ≤ n.(sj ⊧ ϕ and sk ⊧ ψ).
si ⊧ ϕ ∨ ψ iff ∃j, k ∶ i ≤ j, k ≤ n.(sj ⊧ ϕ or sk ⊧ ψ).
si ⊧ ϕ . ψ iff ∃j, k ∶ i ≤ j ≤ k ≤ n.(sj ⊧ ϕ and sk ⊧ ψ).

(9)

17

The path π satisfies an EOL formula ϕ iff ∃i.si ⊧ ϕ. Simply put, an EOL
formula expresses features on traces, while satisfaction of the features does not
have to be at the beginning of the trace.

Traces can be compared according to the events that occur on a trace. Given
two traces π1 and π2, π2 is said to contain π1, denoted πq ⊆ π2 if for all variables

a, π1 ⊧ a ⇒ π2 ⊧ a; π2 is said to sequentially contain π1, denoted πq
.
⊆ π2 if

for all variables a1 and a2, π1 ⊧ a1 . a2 ⇒ π2 ⊧ a1 . a2. The ⊆ and
.
⊆ relations

establishes two partial orders. The set of minimal traces can be determined
given a set Π of traces, i.e., min⊆(Π) ∶= {π ∈ Π ∣ ∀π′ ∈ Π.π′ ⊆ π ⇒ π′ = π}, or
min .

⊆
(Π) ∶= {π ∈ Π ∣ ∀π′ ∈ Π.π′

.
⊆ π⇒ π′ ≐ π}.

Each finite minimal trace is viewed as a feature in this work. The trace
corresponds to a sequence of events happening in order, and is equivalent to
a formula in EOL. The correspondence is straightforward: for the trace π =
s0, . . . , sn, where L(si+1) = ai+1 (0 ≤ i < n), the EOL is simply a1 .⋯ . an.

Faults are modeled as state formula in a usual temporal logic. In this work,
the PRISM model checker [11] is used since the underlying system models are
continuous-time Markov chains. For a given fault modeled as a state formula t,
the authors use the PRISM model checker to check the formula P=?(trueU t).
This leads the model checker to yield a set ΠC of counterexample traces together
with the probability for each trace. The features that are shown in the set ΠC

of counterexample traces is min⊆(ΠC).
The goal of the causality analysis in this work is to identify which features

in the set min⊆(ΠC) is the cause for the fault t, according to the causality
definition below.

4.1.2 Actual Cause

The theory of actual cause (synonym with token causality) used in this paper is
an adaptation of the one in [9]. The main idea is to (a) distinguish endogenous
and exogenous variables, i.e., the ones that are and are not considered to be
suspects of causes; and (b) identify three criteria to deciding causality based
on the manipulations on endogenous variable values. For Part (b), the three
criteria are actual observation, necessity and sufficiency, and minimality. The
details of the theory is thoroughly discussed in [9], while the adaption used in
this paper is discussed below.

Given a trace feature expressed as an EOL formula ϕ and a fault condition
expressed as a state formula t, three conditions are needed for the determination
of the actual cause between ϕ and t.

AC1: There exists a trace π1 in ΠC such that π1 ⊧ ϕ and ∃i.π1[i] ⊧ t. Let val1
be the variable valuation on trace π1.

AC2: Partition the set AP of variables into disjoint sets Z and W , where the
variables in Z are the ones occurring in either ϕ or t. Let X ⊆ Z be a
subset. There exists a valuation val2 such that

18

1. Changing the values of the variables in X and W from val1 to val2
changes t from true to false.

2. Setting the values of the variables in S from val1 to val2 has no effect
on t as long as the values of the variables in X are kept at the values
defined by val1.

AC3: The set X is minimal, i.e., no subset of X satisfies the conditions in AC1
and AC2.

The three conditions defined above reflect the criteria defined in [9], respec-
tively. First, for the feature expressed in ϕ to be a cause for t, they must appear
on at least one possible traces. Second, condition AC2.1 expresses the necessity
condition, where the values of variables in X must be as in val1 for the property
t to be true; while condition AC2.2 expresses the sufficient condition, where
no matter what values the variables other than X change to, the property t is
still satisfied. The minimality condition in AC3 is essentially satisfied by con-
struction, when the candidate for the fault condition t is chosen from the set
min⊆(ΠC). This is because,

Notice that a salient aspect of difference compared to the causality definitions
in [8] is that, the choice of val1 and val2 is existentially quantified, as opposed
to being universally quantified in [8]. The distinction between the two choices
is discussed in Subsection 4.3.1.

4.1.3 A Traingate Example

Consider a traingate example where events in the system are modeled with vari-
ables observation, i.e., Gc: gate closed; Go: gate open; Ta: train approaching
the road; Tc: train crossing the road; T l: train leaving the road; Ca: car ap-
proaching the gate; Cc: car crossing the tracks; and Cl: car has left the gate.
A trace is then represented as a sequence of the occurrences of the events. The
sequence ⟨Ta,Ca,Cc,Gc, T c⟩ is a potential hazardous situation, since the car
enters the tracks while a train is also crossing the road.

To formally reason about the causality on this trace, the fault condition is
defined as Cc ∧ (¬ClUGc). When this fault condition is satisfied, a hazard
occurs. A feature extracted from the sequence ⟨Ta,Ca,Cc,Gc, T c⟩ can be rep-
resented as an EOL formula Cc . Gc. The definition of causality is satisfied
when the set X is chosen to be {Tc,Cc}, Z to be {Cl}, and W to be {Ta,Ca}.
As long as the events Tc and Cc occur as observed, there is a situation (when
Cl does not happen) that no matter what values of other variables are, the
fault condition still persists. Note that the subset X = {Cc,Cl, T c} could be an
actual cause too, but it is not minimal.

4.2 Fault Tree Construction

4.2.1 Definitions

A fault tree is an effective method to represent the relationship between system
hazards and their causes. Each node of a fault tree represents an event, indi-

19

cating a potential hazard situation. The children of the node are understood
as the causes for the hazard event at the node. The relationships between a
node’s children are specified by the gate type of the node. Usual gate types
are or-gate, and-gate, and priority and-gate. An or-gate node indicates that
the node would fail if any of its children fails. An and-gate node indicates that
the node would fail if all of its children fail. A priority and-gate node indicates
that the node would fail if all of its children fail at a specific order (visually
represented left-to-right).

4.2.2 Fault Tree Construction Methodology

Of particular interest to this paper, the or-gate and priority and-gate are used.
The construction of fault trees from counterexamples is based on the decompo-
sition of the set ΠC of all counterexample traces according to the set of minimal
traces induced by ΠC . That is, for any minimal trace π in the set min⊆(ΠC), it
defines a causality class: Ππ = {π′ ∈ Π ∣ π ⊆ π′}. Each causality class represents
a possible reason for the fault condition to occur. The union of all causality
classes are the set ΠC of all counterexample traces. However, the causality
classes are not necessarily disjoint, since on a single trace in ΠC , it may present
multiple features that causes the failure.

In fault tree construction, the causality classes are the children of the root
or-gate of the fault condition. Each child, child is then represented by a priority
and-gate to represent the order according to which the events must appear for
the fault condition to occur. A sample fault tree is presented in Figure 4. This
example is from the analysis of an airbag system in [1].

FASICShortage

FETStuckHigh

FASICStuckHigh

MicroControllerFailure

enableFET

FASICStuckHigh

FETStuckHigh

MicroControllerFailure

armFASIC

fireFASIIC

MicroControllerFailure

enableFET

armFASIC

fireFASIC

1.8009E-03

2.5614E-05 1.6924E-06 1.7427E-06 1.3272E-06 1.7705E-03

Figure 4: Fault Tree of the Airbag System (Reproduced from [12])

In this fault tree, the system safety property is that the airbag system should

20

not be deployed when there is no crash situation detected. Explanations to each
hazard are not the scope of this report, and can be found in [1]. The structure
of this automatically computed fault is that, each branch under the or-gate
is an event sequence (indicated by the priority and-gate) that can lead to an
inadvertent deployment of the airbag system.

The computation of the probabilities of each causality class is by summing
up the individual probabilities of all the counterexample traces belonging to
the causality class. The computation of the probability of the or-gate is by the
equation Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). Since in fault trees, the
probability values are relatively small, the term Pr(A∩B) is often omitted and
an estimate Pr(A ∪B) ≈ Pr(A) + Pr(B) is used.

4.2.3 Approximation Algorithm for Deciding Causality and Fault
Tree Construction

As has been proved in [6], causality definitions that are variants of [9] has al-
gorithmic complexity of NP-complete. The approximation algorithms shown
in this paper works by relaxing the search for a subset X of Z, but only de-
ciding whether the set Z satisfies the causality definitions. The rationale for
choosing this approximation is due to the preprocessing step where the mini-
mal counterexample traces are determined. The algorithm takes the set ΠC of
counterexample traces as choices of valuation in condition AC1, whereas the set
of all other maximal simple traces ΠG are choices of the valuation in condition
AC2. The algorithm for deciding one cause is then quadratic to the size of
the set ΠC of counterexample traces. The process for assigning probabilities is
by scanning through the set of counterexample traces, which has a complexity
linear to ∣ΠC ∣. Therefore, the overall complexity for the computation of fault
trees from counterexample traces is cubic to ∣ΠC ∣.

4.3 Critiques

4.3.1 Discussion

Assumptions There are several implicit assumptions used in this paper. First,
it is assumed that all counterexamples are finite traces. While this assumption
simplifies the definitions and algorithm of the approach, it is not discussed
in the paper whether counterexamples for liveness properties are handled the
same way. The computation of minimal traces would essentially lose the looping
information that is usually associated with the counterexamples.

A second assumption is that, the set ΠG of “good” traces are “obtained at
no additional cost”. This assumption is not true, since the set ΠG is not the
simple complement of the set Π∖ΠC (where Π is the set of all finite traces built
on the same set of atomic variables). Rather, ΠG is the set of the “maximal
simple traces” out of Π ∖ΠC . This set indeed requires additional computation.
In addition, the set ΠG may be infinite, under which case the algorithm provided
in the paper would not finish.

21

Using Different Logics for Causes and Effects. In this paper, the logic for
expressing features of the traces is EOL, while the fault conditions are expressed
in usual temporal logics. This choice may seem counter-intuitive, while in fact,
the causality analysis is not affected by the use of different logics. The only
requirement is that, the formula of the causes and effects could be checked for
truth values on a common observation, in this case, a counterexample trace. A
similar treatment where different logics are used can be found in [18].
On the Choice of Quantifiers in Counterfactual Trace Construction.
In the definition of causality in this work (as well as in [9] from which the
definition is adapted), the necessary and sufficient checks require the existence
of an alternative valuation of the variables which satisfies the conditions defined
in AC2.1 and AC2.2. In stark contrast, the necessary and sufficient definitions
given in [8] require that for all counterfactual traces, certain conditions should
hold (see Section 2.2).

None of the surveyed work in this report provided discussion on the rationale
on the choice of the quantifiers. An understanding of this choice might be ob-
tained from the perspectives of the two sets of papers. In [8], the authors want
to bring the notion of blame used in the court setting into the engineering do-
main, so that once a component is identified as a (necessary or sufficient) cause,
there should be no excuse for the component to escape the blame. Therefore,
the quantifiers are chosen to be universal, where all possible system executions
are considered. In the work of [9], the initial goal is to formally characterize the
informal human reasoning of causes [10]. In such cases, a human rarely reasons
about causality by enumerating all possible scenarios, but rather would pro-
vide an alternative explanation where the effect would be as observed if certain
causal events did not happen. Thus, the quantifiers is chosen to be existential
in the work of [9, 12]. It is not easy or necessary, if possible at all, to determine
whether one definition is advantageous over another. One should choose the
proper definition of causality based on the application scenario under analysis.

4.3.2 Strength

Full Automation in Computation and Fault Tree Construction. Not
discussed in detail in this report, the causality analysis and fault tree construc-
tion presented in this work is fully automated by the authors. This enables the
authors to apply the analysis to relative big case studies such as an embedded
control system [16], a train odometer controller [3], and an airbag system [1], the
biggest of which generates 738 counterexample traces but with a computation
time within minutes.

4.3.3 Limitations or Possible Extensions

Modeling Absence of Events. As the example in Section 4.1.3 shows, the
event that the car has left the tracks being missing can potentially also be a
cause. However, the EOL formula Cc.¬Cl .Tc is not a proper way to express
the facts that the car leaving event Cl is missing in between a car crossing and

22

train crossing event. This formula expresses that, on one of the states in between
the Cc and Tc events, the Cl event does not appear, not all. A general problem
associated with the EOL shown in this paper is the inability of expressing the
absence of events in an interval on a trace. Therefore, the causality classes
identified in this paper are all sequences of occurrences of events, rather than
the non-occurrence of an event as part of a sequence.

A natural idea is to extend the EOL for such purposes. In a follow-up work
by the same authors [14], the EOL is extended with a ternary operator .<.>,
where ϕ1 .< ψ .> ϕ2 means that the event ψ occurs in between ϕ1 and ϕ2 on
a trace. With this operator, the feature that the the car leaving event does
not occur in between the car crossing and train crossing events is expressed as
Cc .< ¬Cl .> Gc.
Need for More Suitable Toolchains. Though the authors managed to glue
several existing tools together to analyze causality and build the fault trees,
many smaller adjustment are made at each step. For example, the choice of
a continuous-time Markov chain as the system model is affected by the choice
available in the PRISM model checker, which is in turn chosen due to the
availability of counterexample generator called DiPro. Affected by the choice of
modeling language, the logic for describing system properties are limited too. In
this paper, the temporal logic used is the continuous stochastic logic, but with
only a fragment where the P≤p operator is used. A potential next step of the
approach is to limit the modeling languages as well as specification languages,
and design and implement an easy-to-use environment for causality analysis and
fault tree generation, similar to the integration of the analysis into an existing
product as done in [2].

5 Discussion and Conclusion

5.1 Comparisons Across the Approaches

As a brief summary, the causality analysis problems that are investigated in
this paper follow a common pattern: defining a formal notion of causality, in-
vestigate the computation cost and approximation algorithm, and apply the
causality definitions into applications, either directly or indirectly. Table 2 lists
comparisons of the three approaches surveyed in the paper.

[8] [2] [12]

Relata: Cause Prefix of local trace (§2.2) Pair ⟨s, v⟩ (§3.1) Feature (§4.1.1)
Relata: Effect Global property violation Property violation Property violation
Trace Model Local recordings (§2.1) Counterexample trace Counterexample trace

Property Spec. Not fixed LTL EOL/CSL
Causality Weak, necessary, and sufficient Potential cause Actual cause

Complexity: Exact EXPTIME NP-complete NP-complete

Complexity: Approx. – O(k + ∣ϕ∣) O(∣ΠC ∣
3
)

Application Cruise control Model checker integration Airbag control system

Table 2: Comparison Across the Approaches

23

5.2 Discussion

5.2.1 Counterfactuals as a Tool for Causality Reasoning

It is assumed in all the work surveyed that causality reasoning is based on a for-
malization of counterfactual reasoning [15]. There are philosophical debates in
the literature on whether counterfactuals are fundamental concepts than causes,
or counterfactuals are only an apparatus for testing causality. The surveyed
work circumvented the discussions by simply adopting the latter assumption for
granted.

5.2.2 Using Three-valued Logics

In [2], a three-valued semantics for the LTL is used for the interpretation of
an LTL formula on a finite trace. The rationale is that, when a trace has not
finished, the truth value of an LTL formula cannot be decided. However, in [12],
a similar temporal logic is used to describe system properties, but the approach
has not mention of three-valued semantics. The reason for the latter is that,
the fault conditions are expressed only as state formula and their truth values
can indeed be decided on a single state. The use of a temporal logic in [12], is
simply because the limitation to the PRISM tool so that a simple state formula
is transformed to a temporal logic formula. In general, three-valued semantics
are necessary only when path formulas are involved in the decision of a formula
value on a finite trace.

5.2.3 Subjectivity of Causality Definitions

One reason that the causality definitions in the surveyed papers are different is
that the underlying system models and property specification languages vary.
However, as discussed in Section 4.3.1, when considering counterfactual worlds,
either existential or universal quantifications can be used. There are essentially
more available choices when the quantitative measures of the sets are considered.
This observation in fact shows a lack of consensus in the definition of causality,
regardless of the underlying system model of specification language.

The lack of consensus essentially makes the causality definitions subjective.
It is up to the analyzer to define and use a notion of causality that is suitable
for the system under analysis. The choice of causality defnitions may be subject
to the expertise of the analyzer. Moreover, except for comparing with human
intuition for causality, there does not exist a better way of deciding the appro-
priateness of the chosen causality definition. This is an inevitable outcome of
the subjectivity of causality definitions. In algorithmic causality analysis, it is of
importance that the involved parties agree on a commonly accepted definition
causality.

5.2.4 First Violations

Both in [8] and [2], only the causality between the traces/events and the first
violation of a property on a trace is considered. In [2], the authors’ explanation

24

is that “the first failure is the most interesting one for the user.” This may
be the case for counterexamples from model checking, while in an monitoring
setting, it is not always the case that the system halts after the first violation.
Exploration of later failures would be helpful to gain insights to the system as
well.

A challenge in dealing with later failures is that, it is not clear how to segment
an observed trace. Some options include but not limited to: (a) always analysis
from the start; (b) restart analysis after previous failure; and (c) keeping a fixed
window of history events. Study on the validation of the choices would be useful
to enhance the application of causality analysis.

5.3 Conclusion

The causality analysis has seen its applications in system analysis in the papers
surveyed in this report. When a system property violation occurs, causality
analysis helps establish the causal relationship between the local components,
traces, and/or events with the violation. The formal definitions of causality
make it possible for the approximation algorithms to estimate the causality,
which greatly improves the applicability of causality analysis. Some challenges in
causality analysis, including incorporating tool support, enriching the modeling
languages, developing efficient algorithms, as well as the use of causality analysis
in more case studies, lie ahead as interesting research problems.

References

[1] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, and
S. Leue. Safety analysis of an airbag system using probabilistic fmea
and probabilistic counterexamples. In Quantitative Evaluation of Systems,
2009. QEST ’09. Sixth International Conference on the, pages 299 –308,
sept. 2009.

[2] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining
counterexamples using causality. In Computer Aided Verification, pages
94–108. Springer, 2009.

[3] E. Böde, T. Peikenkamp, J. Rakow, and S. Wischmeyer. Model based
importance analysis for minimal cut sets. In Automated Technology for
Verification and Analysis, pages 303–317. Springer, 2008.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[5] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and
D. Van Campenhout. Reasoning with temporal logic on truncated paths.
In Computer Aided Verification, pages 27–39. Springer, 2003.

[6] T. Eiter and T. Lukasiewicz. Complexity results for structure-based causal-
ity. Artificial Intelligence, 142(1):53–89, 2002.

[7] G. Gossler. Personal communication.

25

[8] G. Gössler, D. L. Métayer, and J.-B. Raclet. Causality analysis in con-
tract violation. In Runtime Verification, volume 6418 of Lecture Notes in
Computer Science, pages 270–284. 2010.

[9] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model
approach. part i: Causes. The British Journal for the Philosophy of Science,
56(4):843–887, December 2005.

[10] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model
approach. part ii: Explanations. The British Journal for the Philosophy of
Science, 56(4):889–911, December 2005.

[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for
automatic verification of probabilistic systems. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 441–444. Springer, 2006.

[12] M. Kuntz, F. Leitner-Fischer, and S. Leue. From probabilistic counterex-
amples via causality to fault trees. In F. Flammini, S. Bologna, and V. Vit-
torini, editors, Computer Safety, Reliability, and Security, volume 6894 of
Lecture Notes in Computer Science, pages 71–84. Springer Berlin Heidel-
berg, 2011.

[13] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[14] F. Leitner-Fischer and S. Leue. On the synergy of probabilistic causality
computation and causality checking. In SPIN, 2013.

[15] D. Lewis. Counterfactuals. Wiley-Blackwell, 2nd edition, 2001.
[16] J. Muppala, G. Ciardo, and K. S. Trivedi. Stochastic reward nets for

reliability prediction. Communications in reliability, maintainability and
serviceability, 1(2):9–20, 1994.

[17] W. Vesely. Fault tree handbook. Nuclear Regulatory Commission, 1987.
[18] S. Wang, A. Ayoub, B. Kim, G. Gossler, O. Sokolsky, and I. Lee. A causality

analysis framework for component-based real-time systems. In Proceedings
of RV’13, the 4th International Conference on Runtime Verification, 2013.

26

